Water for Food & Beverage

Publication information ii

Foreword iii

Exchange rates used in this publication iv

Executive summary v

Global water technology market for food and beverage, 2011 and 2020 v

Market challenges vi

Opportunities vi

Food and beverage industry diagram: full summary ix

1. Introduction to the food and beverage industry 1

1.1 The food and beverage industry 1

1.2 Food and beverage industry subsectors 1

Figure 1.1 Food industry subsectors 2

Figure 1.2 Beverage industry subsectors 3

1.2.1 Food and beverage generic manufacturing steps 3

Figure 1.3 Generic food and beverage processing steps for fruit/vegetables and meat raw materials 4

1.2.1.1 Receipt of raw materials 5

1.2.1.2 Primary grading/screening/processing 5

1.2.1.3 Intermediary storage 5

1.2.1.4 Primary cleaning/washing 5

1.2.1.5 Sorting, grading and inspection 5

1.2.1.6 Product preparation 5

1.2.1.7 Product processing 5

1.2.1.8 Further processing 6

1.2.1.9 Packaging 6

1.3 The role of water in food and beverage plants 6

1.3.1 Water consumption in food and beverage plants 6

Figure 1.4 Water consuming activities in food and beverage plants 7

Figure 1.5 Water consumption in beverage plants 7

Figure 1.6 Water consumption in selected food processing plants 7

Figure 1.7 Water consumption in vegetable and fruit processing plants 8

Figure 1.8 Water consumption in meat processing plants 8

1.3.2 Wastewater characteristics 8

Figure 1.9 Variations in wastewater contaminants 8

Figure 1.10 Discharge limits for wastewater generated by the food and beverage industry 9

Figure 1.11 Wastewater characteristics according to food and beverage subsectors 9

1.4 Manufacturing processes of food and beverage products 10

1.4.1 Dairy subsector 10

Figure 1.12 Wastewater generating activities 10

Figure 1.13 Standardised processing steps for butter and cheese 11

1.4.1.1 Raw material reception 12

1.4.1.2 Clarification, separation and standardisation 12

1.4.1.3 Pasteurisation and cooling of milk products 12

1.4.1.4 Butter production 12

1.4.1.5 Cheese production 12

1.4.2 Brewery subsector 13

Figure 1.14 Processing steps for brewing beer 14

1.4.2.1 Raw materials 14

1.4.2.2 Wort production 15

1.4.2.3 Mash filtration (lautering) 15

1.4.2.4 Wort boiling 15

1.4.2.5 Wort clarification and cooling 15

1.4.2.6 Fermentation and maturation 15
1.4.2.7 Beer processing: filtration 15
1.4.2.8 Beer processing: carbonation 15
1.4.2.9 Pasteurisation 16
1.4.2.10 Packaging 16
1.4.2.11 High gravity brewing 16
1.4.3 Fruit and vegetable subsector 16
   Figure 1.15 Fruit and vegetable processing steps 17
1.4.3.1 Reception of fruit and vegetable raw materials 18
1.4.3.2 Temporary storage 18
1.4.3.3 Washing 18
1.4.3.4 Fruit and vegetable sorting 18
1.4.3.5 Skin removal or peeling 18
1.4.3.6 Size reduction 19
1.4.3.7 Blanching 19
   Figure 1.16 Blanching temperature and time for selected vegetables 19
1.4.3.8 Cooling 19
1.4.3.9 Canning 19
1.4.3.10 Packaging 20
1.4.4 Sugar subsector 20
   Figure 1.17 Processing steps for sugar cane and sugar beets 21
1.4.4.1 Reception of raw materials 22
1.4.4.2 Washing and extraction of cane 22
1.4.4.3 Washing and extraction of beets 22
1.4.4.4 Clarification/purification 22
1.4.4.5 Evaporation and crystallisation 22
1.4.4.6 Sugar refining 23
1.4.4.7 Distillery 23
1.4.5 Meat and poultry subsector: Meat processing plants 23
   Figure 1.18 Bovine and porcine processing steps 24
1.4.5.1 Stunning, sticking and bleeding 24
1.4.5.2 Primary processing 25
1.4.5.3 Evisceration and preparation 25
1.4.5.4 Rendering 25
1.4.6 Meat and poultry subsector: Poultry processing plants 25
   Figure 1.19 Poultry processing steps 26
1.4.6.1 Pre-processing 27
1.4.6.2 Slaughtering, bleeding and scalding 27
1.4.6.3 Further processing 27
1.4.6.4 Evisceration 27
1.4.6.5 Storing and packaging 27
1.4.6.6 Rendering 27
1.4.7 Fish processing subsector 27
   Figure 1.20 Fish processing steps 28
1.4.7.1 Material reception 29
1.4.7.2 Preparation 29
1.4.7.3 Product processing 29
1.4.7.4 Product finalisation 29
1.4.7.5 By-products 30
1.4.8 Vegetable oil subsector 30
   Figure 1.21 Vegetable oil processing steps 31
1.4.8.1 Raw material reception 31
1.4.8.2 Extraction 32
1.4.8.3 Palm oil extraction 32
1.4.8.4 Washing, pressing and clarification 32
1.4.8.5 Conditioning 32
1.4.8.6 Degumming 32
1.4.8.7 Refinement 32
1.4.8.8 Modification processes 33
1.5 Aquaculture sector 33
# TABLE OF CONTENTS

1.5.1 Fish farming 34
1.5.1.1 Intensive systems 34
1.5.1.2 Semi-intensive systems 34
1.5.1.3 Extensive systems 34
1.5.2 Cultivation activities 35
1.5.2.1 Preparation and stocking 35
1.5.2.2 Start feeding 35
1.5.2.3 On-growing 35
1.5.2.4 Harvesting 36
1.5.2.5 Cleaning 36
1.5.6 Water:product ratios for the food and beverage industry 36
1.6.1 Water consumption in European food manufacturing 36
1.6.2 Water consumption during the processing of meat and fish 36
1.6.3 Water consumption during the processing of fruit and vegetables 37
1.6.4 Water consumption in the dairy industry 38
1.6.5 Water consumption during the production of sugar and starch products 38
1.6.6 Water consumption in beverage manufacturing 38
1.6.7 Water consumption in Brazilian food and beverage manufacturing 39
1.6.8 Wastewater from food and beverage manufacturing 40
1.6.9 Wastewater from European food and beverage manufacturing 40
1.6.10 Wastewater produced from the processing of meat and fish 40
1.6.11 Wastewater produced during the processing of 1 kg of carcass, in European countries 40
1.6.12 Wastewater produced during the rendering of 1 kg of selected raw materials, in European countries 40
1.6.13 Wastewater produced during manufacture of dairy products 40
1.6.14 Wastewater produced during manufacture of selected dairy products in Scandinavian dairies 40
1.6.15 Wastewater produced during the manufacture of vegetable oil products 40
1.6.16 Wastewater produced in the production of oil in European countries 41
1.6.17 Wastewater produced during the manufacture of starch products 41
1.6.18 Wastewater produced during manufacture of starch in Austria from selected sources 41
1.6.19 Wastewater from the production of food in the U.S. 41
1.6.20 Wastewater produced by the slaughter of selected animals in U.S. slaughterhouses 41
1.6.21 Wastewater produced from manufacturing milk products in the U.S. 42
1.6.22 Volume of water required to process 1 kg of selected fruits and vegetables in the U.S. 42
1.7 Water volumes for the food and beverage industry 42
1.7.1 Water use in the United States 42
1.7.2 Wastewater discharge in the United States 43
1.7.3 Water use in Australia 44
1.7.4 Water use in the United Kingdom 44
1.7.5 An estimate of total water use for the food and beverage industry 45
1.7.6 Estimates of global food and beverage water use in 2012 45

2. Drivers for water efficiency 47
2.1 Brand protection 47
2.1 The sustainability factor 47
  2.1.1 The sustainability factor 47
  2.1.2 The risk factor 49
  2.1.3 Voluntary initiatives 51
    2.1.3.1 United Nations CEO Water Mandate 51
    2.1.3.2 Beverage Industry Environmental Roundtable (BIER) 51
    2.1.3.3 World Business Council for Sustainable Development (WBCSD) 52
    2.1.3.4 The Global Environmental Management Initiative (GEMI) 52
    2.1.3.5 The Water Disclosure Project (CDP Water Disclosure) 52
    2.1.3.6 Alliance for Water Stewardship (AWS) 52
    2.1.3.7 ISO International Organisation for Standardisation 52
    2.1.3.8 NSF International – The Public Health and Safety Company 53
    2.1.3.9 Codex Alimentarius Commission 53
  2.2 Water scarcity 53
    2.2.1 The limited resource factor 53
    2.2.2 The cost factor 55
  2.3 Regulations 57
    2.3.1 The scarcity factor 57
    2.3.2 The regulatory framework 58
      2.3.2.1 Water abstraction regulations 58
      2.3.2.2 Process water quality standards 59
      2.3.2.3 Wastewater discharge standards 60
      2.3.2.4 Adoption of universal regulations at plant sites 61
  2.4 Regulatory standards 64
    2.4.1 Process water quality 64
    2.4.2 Industrial wastewater discharge standards 65
      2.4.2.1 Australia 65
        Figure 2.1 National acceptance guidelines for discharge of F&B industrial waste into sewers 66
      2.4.2.2 The European Union 67
        Figure 2.2 Requirements for discharge from urban WWTPs to “normal areas” 68
        Figure 2.3 Requirements for discharge from urban WWTPs to “sensitive areas” 68
      2.4.2.3 United States of America 69
        Direct discharges 69
        Figure 2.4 Existing effluent guidelines for food and beverage industrial categories 70
        Figure 2.5 ELGs for existing sources in the dairy, grain mills and sugar categories, according to BPT 70
        Indirect discharges 71
  3. Water management and technologies 73
    3.1 Water management at food and beverage plants 73
      3.1.1 Water balance 73
        Figure 3.1 Water balance schematic 74
      3.1.2 Food and beverage process water efficiency 74
        3.1.2.1 Leaks 74
        3.1.2.2 Optimising flow rate 75
        3.1.2.3 Process controls 75
      3.1.3 Cleaning water efficiency 75
        3.1.3.1 Design and layout of processing equipment 75
        3.1.3.2 Dry cleaning 75
        3.1.3.3 Trigger-operated controls for hoses 75
        3.1.3.4 High-pressure cleaning systems 75
        3.1.3.5 Clean-in-place (CIP) systems 75
        3.1.3.6 Efficient product changeovers 76
        3.1.3.7 Crate washers 76
      3.1.4 Utility water efficiency 76
        3.1.4.1 Cooling tower and boiler blowdown 76
        3.1.4.2 Cooling tower operability 76
        3.1.4.3 Sealing water equipment 76
      3.1.5 Efficiency in ancillary water use 76
      3.1.6 Rainwater/stormwater harvesting 76
      3.1.7 Water reuse 76
TABLE OF CONTENTS

3.1.7.1 Reuse of condensate 77
3.1.7.2 Membrane technologies for water reuse 77
Figure 3.2 Food and beverage industry diagram: technologies and subsectors 79
3.2 Process and utility water technologies 80
Figure 3.3 Technologies used for process water and utility water 80
3.2.1 Screening, clarification, filtration and softening technologies 80
3.2.1.1 Screening 80
3.2.1.2 Clarifiers 80
3.2.1.3 Multimedia filtration 81
Figure 3.4 Multimedia filtration tank 81
3.2.1.4 Water softening 82
3.2.2 Membrane technologies 82
3.2.2.1 Microfiltration (MF) and ultrafiltration (UF) 82
3.2.2.2 Nanofiltration (NF) 82
3.2.2.3 Reverse osmosis (RO) 83
3.2.2.4 Ion exchange (IX) 83
3.2.3 Clean-in-place (CIP) technologies 83
3.2.4 Disinfection technologies 84
Figure 3.5 Comparison of disinfectants 84
3.2.4.1 Chlorine 85
3.2.4.2 Chlorine dioxide 85
3.2.4.3 UV radiation 85
3.2.4.4 Sodium hypochlorite 86
Figure 3.6 Electrochemical reactions in an OSG’s electrolytic cells 87
3.2.4.5 Ozonation technologies 87
3.2.5 Deionising technologies 87
3.2.5.1 Two-stage deionisation 88
3.2.5.2 Continuous electrodeionisation (CEDI) 88
3.2.6 Multi-technology solutions 88
3.3 Wastewater treatment 89
3.3.1 Screen filter technologies 89
3.3.2 Clarifiers 89
3.3.3 Flotation 89
3.3.4 Chemical precipitation for phosphorus removal 90
3.3.5 Aerobic treatment technologies 90
Figure 3.7 Evaluation of aerobic treatments 90
3.3.5.1 Aerobic treatment units (ATUs) 90
3.3.5.2 Moving bed bioreactor (MBBR) 91
3.3.5.3 Sequencing batch reactor (SBR) 91
Figure 3.8 The five basic phases in SBR systems 92
3.3.5.4 Membrane bioreactors (MBR) 92
Figure 3.9 Externally pressurised cross-flow MBR configuration 93
Figure 3.10 Submerged MBR configuration 93
3.3.5.5 Towards zero liquid discharge (ZLD) technologies 94
3.3.5.6 Anaerobic digester technologies 94
3.3.6 Industry example: Wastewater treatment at a dairy processing plant (Indonesia) 94
Figure 3.11 Raw wastewater characteristics 94
3.4 Water reuse technologies 95
3.4.1 Water softening: Crystallisation pellet reactor 95
3.4.2 Industry example: Water reuse at a pork processing plant (Lamballe, France) 95
Figure 3.12 Increase in plant capacity, 2004–2006 96
3.5 Sludge management 96
3.5.1 Thickening and dewatering technologies 96
3.5.1.1 Mechanical sludge thickening 96
3.5.1.2 Sludge dewatering 96
3.5.2 Sludge stabilisation technologies 97
3.5.2.1 Lime stabilisation 97
3.5.2.2 Chemical stabilisation 97
Figure 3.13 Chemical stabilisation Saphyr™ 97
3.5.3 Thermal hydrolysis and biological treatment 98
3.5.4 Sludge drying technologies 98
3.5.4.1 Thermal drying 98
3.5.4.2 Solar drying 98
3.5.4.3 Hydrothermal oxidation 99
Figure 3.14 Thermal oxidation 99
3.5.4.4 Incineration 100
Figure 3.15 Cross-section of a multiple hearth furnace 100
3.6 Gaining value from wastewater 101
3.6.1 Anaerobic treatment/biogas generating technologies 101
Figure 3.16 Comparison on anaerobic and aerobic treatment 102
3.6.1.1 Continuously stirred tank reactor (CSTR) 102
3.6.1.2 Upflow anaerobic sludge blanket (UASB) 102
Figure 3.17 The upflow anaerobic sludge blanket reactor (UASB) 103
3.6.1.3 Expanded granular sludge blanket (EGSB) 103
3.6.1.4 Internal circulation reactor (IC) 103
3.6.2 Case study: Treatment of Heineken brewery wastewater (UK) 104
Figure 3.18 Discharge limits and biogas volume 104
3.6.2.1 Anaerobic flotation reactor: BIOPAQ®AFR 105
Figure 3.19 Typical influent characteristics 105
3.6.2.2 Anaerobic membrane bioreactors (AnMBR) 105
3.6.3 Biogas 105
3.6.4 Case study: Treatment of sauerkraut wastewater at the Meistratzheim WWTP (France) 106
Figure 3.20 Meistratzheim WWTP upgrade facts 106
Figure 3.21 Technologies used for different processes in the WWTP 106
Figure 3.22 Characteristics of the sauerkraut wastewater 107
Figure 3.23 Different loads of sauerkraut liquid which undergo anaerobic treatment 107
Figure 3.24 The quantity of biogas produced by anaerobic treatment of sludge 107
3.6.5 Nutrient/element recovery technologies 108
3.6.5.1 Nutrient recovery: Fertilisers (Pearl® process) 108
Figure 3.25 Pearl® nutrient recovery process 108
3.6.5.2 Case study: Nutrient recovery process at the Nansemond plant (Virginia, USA) 109
Figure 3.26 Pearl® nutrient recovery process at Nansemond WWTP 109
3.6.6 Element recovery: Bioplastics 110
3.6.6.1 Standard method for bioplastics production 110
3.6.6.2 Wastewater feedstock method for bioplastics production 110
3.6.7 Element recovery: Microbial fuel cells (MFC) 110
3.6.7.1 Electricity generation: Microbial fuel cells (MFC) 111
3.6.7.2 Microbial electrolysis cells/Bioelectrochemically assisted microbial reactor (MEC/BEAMR) process 111
3.7 Technologies for aquaculture 111
Figure 3.27 Aquaculture wastewater technology options 111
3.7.1 Kaldnes™ Recirculation Aquaculture System (RAS) 112
Figure 3.28 Traditional versus improved cultivation methods 112
3.7.2 RAS treatment technologies 112
3.7.2.1 Intake water treatment 112
3.7.2.2 Water conditioning in flow-through systems 113
3.7.2.3 Wastewater treatment 113
3.7.2.4 Sludge treatment 113
4. Market analysis 115
4.1 Market division / segmentation 115
Figure 4.1 Global food and beverage water technology market by country, 2011 and 2020 115
Figure 4.2 Global food and beverage water technology market by technology, 2011 and 2020 116
4.2 Key and emerging players 116
Figure 4.3 Key and emerging players in the water for food and beverage industry 117
4.3 Regional trends 121
4.3.1 F&B company expansion plans 121
Figure 4.4 Countries mentioned in the expansion plans of 50 leading F&B companies, grouped by region 121
4.3.2 Detailed regional financial information from the largest companies 121
4.7 Food and beverage company annual water use

4.8 Food and beverage company profiles
4.8.1 Anheuser-Busch InBev profile
4.8.2 Arla Foods amba profile
4.8.3 Bacardi Ltd profile
4.8.4 Brown-Forman Corporation profile
4.8.5 Campbell Soup Co. profile
4.8.6 Cargill Inc. profile
4.8.7 Carlsberg Group profile
4.8.8 Cola-Cola Co. profile
4.8.9 ConAgra Foods, Inc. profile
4.8.10 Constellation Brands profile
4.8.11 Danone profile
4.8.12 Dean Foods profile
4.8.13 Diageo profile
4.8.14 Dole Food Co. Inc. profile
4.8.15 Dr Oetker profile
4.8.16 Dr Pepper Snapple Group profile
4.8.17 Ferrero profile
4.8.18 Friesland Campina profile
4.8.19 General Mills profile
4.8.20 Grupo Modelo profile
4.8.21 Gruppo Campari profile
4.8.22 H.J.Heinz Company profile
4.8.23 Heineken profile
4.8.24 Hershey Co. profile
4.8.25 Hormel Foods profile
4.8.26 ITO EN Group profile
4.8.27 J.M. Smucker Co. profile
4.8.28 JBS USA profile
4.8.29 Kellogg’s profile
4.8.30 Kraft Foods profile
4.8.31 Maple Leaf Foods profile
4.8.32 Mars Inc. profile
4.8.33 McCain Foods Ltd profile
4.8.34 Mead Johnson profile
4.8.35 Moët Hennessy Louis Vuitton Group profile
4.8.36 Molson Coors profile
4.8.37 Nestlé profile
4.8.38 PepsiCo profile
4.8.39 Pernod Ricard profile
4.8.40 Pilgrim’s Pride Corp. profile
4.8.41 Premier Foods plc profile
4.8.42 Red Bull profile
4.8.43 SAB Miller profile
4.8.44 San Miguel Corporation profile
4.8.45 Saputo Inc. profile
4.8.46 Sara Lee Corp. profile
4.8.47 Smithfield Foods Company profile
4.8.48 Theo Muller profile
4.8.49 Tyson Foods Inc. profile
4.8.50 Unilever Group profile
4.8.51 Fomento Economico Mexicano (FEMSA) profile
5. Accessing the market

5.1 The approach to entering the water for food and beverage market

5.2 Technologies dominating the water for food and beverage market

5.3 Openness of the food and beverage market to new technologies

5.3.1 Decision making for installing new technologies

5.4 Fully integrated solutions versus separate technologies

5.5 Provision of additional services

5.6 Market dynamics

5.6.1 The players in the water for food and beverage market

5.7 Dominance and success of market players

5.7.1 Dominance of established water companies

5.7.2 Smaller players and local markets

5.7.3 Collaborations within the F&B industry

5.7.4 Partnership arrangements and agreements

5.7.5 Procurement process

5.7.6 Market size

6. Water for food and beverage market opportunities

6.1 Overview of market opportunities

6.1.1 Opportunities in water efficiency and sustainability

6.1.2 Opportunities in improved wastewater treatment

6.1.3 Opportunities in gaining value from wastewater

6.1.4 Opportunities in emerging technologies

6.1.5 Opportunities in process water

6.1.6 Opportunities in water reuse

6.2 Market opportunity: Process and utility feedwater

6.2.1 Drivers for using water efficient technologies/strategies

6.3 Market opportunity: Wastewater treatment

6.3.1 Opportunities in wastewater discharge requirements

6.3.2 Challenges when working in developing nations

6.4 Market opportunity: Water reuse

6.4.1 The water reuse trend in the food and beverage industry

6.4.2 Factors limiting the adoption of water reuse

6.4.3 Water reuse opportunities at plant sites

6.4.4 The potential for water reuse in food and beverage products

6.5 Market opportunities: Value from wastewater

6.5.1 Market opportunities: Biogas generation

6.5.1.1 Adoption of the bioenergy market

6.5.1.2 Drivers

6.5.1.3 Use of biogas at F&B plants

6.5.1.4 Limiting factors affecting the use of biogas at plant sites

6.5.1.5 Challenges affecting the bioenergy market opportunity

6.5.1.6 Food and beverage companies that are customers in this market

6.5.1.7 Water technology companies active in the bioenergy market

6.5.2 Market opportunity: Nutrient recovery

6.5.2.1 Overview of the nutrient recovery market

6.5.2.2 The nutrient recovery market trend

6.5.2.3 Approach to market entry

6.5.2.4 Challenges facing the nutrient recovery market

6.5.2.5 Solutions

6.5.2.6 Best positioned companies for nutrient recovery opportunities

6.5.3 Market opportunity: Element recovery

6.5.3.1 Opportunities in bioplastics production

6.5.3.2 Opportunities in microbial fuel cells

6.5.4 Market opportunity: Energy from biomass

Interviewees

References